The Kaposi's sarcoma-associated herpesvirus LANA protein stabilizes and activates c-Myc.

نویسندگان

  • Jianyong Liu
  • Heather J Martin
  • Gangling Liao
  • S Diane Hayward
چکیده

The Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) protein is functionally pleiotropic. LANA contributes to KSHV-associated pathogenesis, in part, by increasing entry of cells into S phase through a process that is driven by LANA interaction with the serine-threonine kinase glycogen synthase kinase 3 (GSK-3) and stabilization of beta-catenin. We now show that LANA affects the activity of another protein involved in cell cycle regulation, c-Myc. Sequencing of c-Myc coding sequences revealed that c-Myc in KSHV-positive primary effusion lymphoma (PEL) cell lines is wild type in the N-terminal region that regulates c-Myc protein stability. Despite this, c-Myc in PEL cells is stabilized. In LANA-expressing cells, inactivation of nuclear GSK-3 reduced phosphorylation of c-Myc at Thr58 and contributed to c-Myc stabilization by decreasing c-Myc ubiquitination. Phosphorylation of c-Myc on Ser62 also affects c-Myc stability and function. We now show that LANA increases the level of phosphorylated extracellular signal-regulated kinase 1 (ERK1) and increases ERK phosphorylation of c-Myc on Ser62. LANA also interacted with c-Myc, and c-Myc amino acids 147 to 220 were required for this interaction. LANA (L1006P) retained the ability to bind to c-Myc and activate ERK1, indicating that these events did not require LANA interaction with GSK-3. Thus, LANA stabilizes c-Myc; prevents the phosphorylation of c-Myc at Thr58, an event that promotes Myc-induced apoptosis; and independently stimulates phosphorylation of c-Myc at Ser62, an event that transcriptionally activates c-Myc. LANA-mediated manipulation of c-Myc function is likely to contribute to KSHV-associated tumorigenesis through the induction of c-Myc regulated cellular genes, as well as by the stimulation of cell cycle progression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor 4 (vIRF4) targets expression of cellular IRF4 and the Myc gene to facilitate lytic replication.

Besides an essential transcriptional factor for B cell development and function, cellular interferon regulatory factor 4 (c-IRF4) directly regulates expression of the c-Myc gene, which is not only associated with various B cell lymphomas but also required for herpesvirus latency and pathogenesis. Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma and prima...

متن کامل

Latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus functionally interacts with heterochromatin protein 1.

Latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus plays an important role in maintenance of the viral genome during latent infection. LANA additionally participates in the transcriptional regulation of several viral and cellular promoters. When tethered to constitutively active promoters, the protein exhibits transcriptional repressor activity. In this report,...

متن کامل

Induction of Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen by the lytic transactivator RTA: a novel mechanism for establishment of latency.

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent contributing to development of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman desease. Following primary infection, latency is typically established. However, the mechanism by which KSHV establishes latency is not understood. We have reported that the latency-associated nuclear antigen (LANA) can re...

متن کامل

ORF73 of herpesvirus saimiri, a viral homolog of Kaposi's sarcoma-associated herpesvirus, modulates the two cellular tumor suppressor proteins p53 and pRb.

All known DNA tumor viruses are known to target and inactivate two main cell cycle regulatory proteins, retinoblastoma protein (pRb) and p53. Inactivation of pRb promotes host cell cycle progression into S phase, and inactivation of p53 promotes cell immortalization. The DNA tumor virus Kaposi's sarcoma associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA) was shown to...

متن کامل

Determination of Kaposi's sarcoma-associated herpesvirus C-terminal latency-associated nuclear antigen residues mediating chromosome association and DNA binding.

Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen (LANA) tethers viral terminal repeat (TR) DNA to mitotic chromosomes to mediate episome persistence. The 1,162-amino-acid LANA protein contains both N- and C-terminal chromosome attachment regions. The LANA C-terminal domain self-associates to specifically bind TR DNA and mitotic chromosomes. Here, we used alanine scanni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 81 19  شماره 

صفحات  -

تاریخ انتشار 2007